4.5. Флюсы и проволоки на основе высоколегированных сталей для дуговой сварки и наплавки.

Классификации флюсов в соответствии со стандартом:

• ISO 14174:2010, а также идентичных ему EN ISO 14174:2010 и ГОСТ Р ИСО 14174:2010 Классификацию см. в разделе 1.6. «Флюсы и проволоки для дуговой сварки под флюсом углеродистых и низколегированных сталей» на стр. XX

Классификации проволок в соответствии со стандартом:

• ISO 14343:2009, а также идентичный ему EN ISO 14343:2009

Классификацию см. в разделе 4.2. «Проволоки сплошного сечения для дуговой сварки в защитных газах плавящимся электродом на основе высоколегированных сталей» на стр. XX

• SFA/AWS A5.9/A5.9M:2006

Классификацию см. в разделе 4.2. «Проволоки сплошного сечения для дуговой сварки в защитных газах плавящимся электродом на основе высоколегированных сталей» на стр. XX

OK Flux 10.92
Нейтральный агломерированный хромокомпенсирующий флюс двойного
назначения. Первое назначение – одно- и многопроходная (без ограничения
толщины) дуговая сварка и наплавка проволочным электродом как стыковых,
так и угловых швов на постоянном токе обратной полярности
высоколегированных аустенитных сталей 300-го типа по ASTM. Флюс
характеризуется хорошими сварочно-технологическими характеристиками и
отличной отделяемостью шлака. Однако следует помнить, что повышенное
содержание влаги во флюсе отрицательно сказывается на отделяемости шлака.
Содержание хрома во флюсе обеспечивает более высокое содержание ферритной
фазы в металле шва, таким образом, снижается риск образования горячих
трещин. Области применения флюса ОК Flux 10.92 – производство
оборудования для химической и нефтехимической промышленности,
шельфовых платформ, сосудов, работающих под давлением, складских
резервуаров, химических емкостей, в электро- и ядерной энергетике, а также в
целлюлозно-бумажной промышленности, гражданском строительстве и
транспортном машиностроении.
Типичный химический состав флюса:

Гипичный химический состав флюса Al₂O₃+MnO 20%

CaF₂ 10% CaO+MgO 30% SiO₂+TiO₂ 35%

Режимы прокалки: 275-325°C, 2-4 часа

T......

Одобрения флюса: НАКС

Классификация	Индекс	Насыпная	Гран.
флюса	основности	плотность	состав
EN ISO 14174:	1,0	1,0	0,25 - 1,6
S A CS 2 56 55 DC			

Тип флюса	Ток и	Легирование
	полярность	
Кальциево- силикатный	DC+	Cr – компенсирующий
Расуол фил	оса (уг флюса/у	г проволоки)

Расход флюса (кг флюса/кг проволоки)							
Напряжение	DC+	AC					
26	0,4						
30	0,55						
34	0,7						
38	0,9						

Рекоменд	уемые соче	тания ОК Гіцх	10.92/П	роволока	
наплавленного	металла и	содержание в	в нем фе	ерритной	фазы:

типичныи химическии состав наплавленного металла и содержание в нем ферритнои фазы:													
Марка проволоки	C	Mn	Si	Cr	Ni	Mo	Cu	Nb	N	S	P	FN	%
													феррита
OK Autrod 16.97	0,04	5,0	0,95	18,8	8,5					≤0,020	≤0,030	~0	~0
OK Autrod 308H	0,04	1,0	0,9	20,0	10,0					≤0,020	≤0,030	11	6
OK Autrod 308L	≤0,03	1,0	0,9	20,0	10,0					≤0,020	≤0,030	15	8
OK Autrod 309L	0,02	1,1	0,8	24,1	12,9					≤0,020	≤0,030	21	12
OK Autrod 309MoL	0,02	1,5	0,8	21,0	15,0	3,0				≤0,020	≤0,030	12	6,5
OK Autrod 316H	0,04	1,0	0,8	19,1	11,6	2,7				≤0,020	≤0,030	12	6,5
OK Autrod 316L	0,02	1,0	0,8	19,1	11,6	2,7				≤0,020	≤0,030	16	9
OK Autrod 318	0,035	1,2	0,5	18,5	12,0	2,6		0,3		≤0,020	≤0,030	9	5
OK Autrod 347	0,04	0,9	0,75	19,8	9,7			0,5		≤0,020	≤0,030	9	5

Классификации	і проволок, і	их одобре	<u>ния и типич</u> ь	ные меха	нически	е свойст	ва напла	вленног	эго металла:				
Марка	EN ISO	AWS	НАКС	ABS	BV	DNV	GL	LR	Механические свойства			тва	
проволоки	14343-A	A 5.9	(диаметры)						$\sigma_{\scriptscriptstyle T}$	$\sigma_{\scriptscriptstyle B}$	δ	T	KCV
									[МПа]	[МПа]	[%]	[°C]	[Дж/см ²]
OK Autrod 16.97	S 18 8 Mn								450	630	42	0	75
												-20	69
												-60	56
OK Autrod 308H	S 19 9 H	ER308H							365	580	38	-60	75
OK Autrod 308L	S 19 9 L	ER308L	3.2, 4.0						365	580	38	-60	75
												-196	63
OK Autrod 309L	S 23 12 L	ER309L	3.2, 4.0					✓	410	575	50		
OK Autrod 309MoL	S 23 12 2 L								400	600	38	+20	150
OK Autrod 316H	S 19 12 3 H	ER316H							385	590	36		
OK Autrod 316L	S 19 12 3 L	ER316L				✓			385	590	36	-70	69
OK Autrod 318	S 19 12 3 Nb	ER318							440	600	42	+20	125
												-60	113
												-110	50
OK Autrod 347	S 19 9 Nb	ER347	2.4, 3.2, 4.0						470	640	35	+20	81
												-60	69
												-110	50

OK Flux 10.93

Основный агломерированный флюс, предназначенный для одно- и многопроходной сварки, в том числе и листов неограниченной толщины стыковых и угловых швов на постоянном токе обратной полярности высоколегированных сталей обеспечивая при этом отличные сварочнотехнологические характеристики. Флюс сочетается с большинством высоколегированных проволок аустенитного, ферритного и аустенитноферритного классов. Флюс характеризуется хорошими сварочнотехнологическими свойствами, особенно в положении Н2(РВ) (тавровое в угол), при этом обеспечивается отличное отделение шлака. гладкий шов и хороший внешний вид валика. Однако следует помнить, что повышенное содержание влаги во флюсе отрицательно сказывается на отделяемости шлака. Незначительное легирование Si из флюса обеспечивает хорошие механические характеристики, в особенности высокую ударную вязкость. Из всей линейки флюсов производства компании ЭСАБ для сварки нержавеющих коррозионностойких сталей, он является наиболее часто используемым. ОК Flux 10.93 применяется для изготовления оборудования для химической и нефтехимической промышленности, шельфовых платформ, сосудов, работающих под давлением, складских резервуаров, химических емкостей, в электро- и ядерной энергетике, а также в целлюлозно-бумажной промышленности, гражданском строительстве и транспортном машиностроении. Этот флюс очень хорошо подходит для сварки аустенитно-ферритной дуплексной нержавеющей стали, например, при строительстве химических емкостей.

Типичный химический состав флюса:

Al₂O₃+MnO 40% CaF₂ 50% SiO₂+TiO₂ 10%

OK Autrod 385

OK Autrod 2307

OK Autrod 2209

OK Autrod 2509

OK Autrod 430*

Режимы прокалки: 275-325°C, 2-4 часа

Одобрения флюса: НАКС

Классификация флюса	Индекс основности	Насыпная плотность	Гран. состав
EN ISO 14174:	1,7	1,0	0,25-1,6
S A AF 2 55 45 DC			

Тип флюса	Ток и полярность	Легирование
Алюминатно- фторидный	DC+	Нелегирующий

Расход флюса (кг флюса/кг проволоки)								
Напряжение DC+ AC								
26	0,5							
30	0,6							
34	0,8							
38	1.0							

< 0.020

≤0,020

≤0,020

≤0,020

≤0,030

0,12

0.15

0,25

≤0,020

≤0,025

≤0,025

≤0,025

≤0,030

0

50

45

45

0

30

26

26

100

Типичный химический состав наплавленного металла и содержание в нем ферритной фазы: Марка проволоки Mn Si \mathbf{Cr} Ni Mo Cu S FN феррита OK Autrod 16.97 0,06 6,3 1,2 18,0 8,0 ≤0,020 ≤0,030 ~0 3,5 9.9 OK Autrod 308H 0,05 199 ≤0,020 < 0.030 1,5 0,6 6 OK Autrod 308L ≤0,03 1,4 0,6 20,0 10,0 ≤0,020 ≤0,030 8 4,5 24,0 ≤0,020 ≤0,030 OK Autrod 309L 0,6 12.5 16 9 ≤ 0.03 1,5 OK Autrod 309MoL 0.02 1,5 0,5 21,0 15.0 3,0 ≤0,020 ≤0,030 8 4,5 OK Autrod 310 0,10 1,1 0,5 26,0 21,0 ≤0,020 ≤0,030 0 0 OK Autrod 310MoL 0,02 4,0 0,1 24,5 22.0 2,1 0.12 ≤0,020 ≤0,025 0 0 OK Autrod 312 0,10 1,5 0,5 29,0 9,5 ≤0,020 ≤0,030 50 30 19,0 22 1,5 12,5 3,5 OK Autrod 316H 0.05 0,6 ≤0,020 < 0.030 6 12,5 2,6 ≤0,020 4,5 OK Autrod 316L 0,02 1,4 0,5 18,0 ≤0,030 8 0,13 OK Autrod 16.38 0.02 5,4 0,7 20.0 15,5 2,5 ≤0,020 < 0.030 ~() ~0 OK Autrod 317 19,0 3,5 ≤0,020 ≤0,030 4,5 ≤ 0.04 1,5 0,6 13,5 8 OK Autrod 318 0.035 18,5 12.0 2,6 0,3 ≤0,020 < 0.030 9 5 1.2 0.5 OK Autrod 347 0,035 0,5 19,2 9,6 0,5 ≤0,020 ≤0,030 4,5 1.1 8

4,0

3,0

4,0

1,5

Рекомендуемые сочетания ОК Flux 10.93/проволока

≤0,03

0,02

0.03

0,02

0,05

1.5

1,1

1.4

0,5

0,2

0.6

0,7

0.5

0,5

0,2

19.0

22,5

22,0

24,5

16.2

25.0

7,5

9,0

9,5

^{*} Применяется только для наплавки

Марка	EN ISO	AWS	НАКС	ABS	BV	DNV	GL	авленно LR				Леханические свойства		тва
проволоки	14343-A	A 5.9	(диаметры)						$\sigma_{\rm T}$	σв	δ	T	KCV	
077.1 . 1160.7	G 40 0 3 5					✓				[МПа]	[%]		[Дж/см ²]	
OK Autrod 16.97 OK Autrod 308H	S 18 8 Mn	EDAGGII				*			400	600	45	-20	75	
OK Autrod 308H OK Autrod 308L	S 19 9 H S 19 9 L	ER308H ER308L	3.2, 4.0			√			400	560 560	38 38	+20	125	
OK Autrou 308L	S 199L	EK308L	3.2, 4.0			*			400	300	38	-40	94	
												-60	81	
												-110	69	
												-196	50	
OK Autrod 309L	S 23 12 L	ER309L	3.2, 4.0			✓		✓	430	570	33	+20	113	
OH Hadioa SO/E	5 23 12 E	LIKSOYL	3.2, 1.0						150	370	33	-60	88	
												-110	75	
												-196	44	
OK Autrod 309MoL	S 23 12 2 L								400	600	38	+20	150	
OK Autrod 310	S 25 20	ER310							390	590	45	+20	170	
OK Autrod 310MoL	S 25 22 2 N L								335	575	42	+20	150	
OK Autrod 312	S 29 9	ER312							530	750	20	+20	63	
OK Autrod 316H	S 19 12 3 H	ER316H							390	565	40			
OK Autrod 316L	S 19 12 3 L	ER316L		✓		✓			390	565	42	+20	125	
												-40	119	
												-60	113	
												-110	94	
OK Autrod 16.38	S 20 16 3								410	600	44	-196 -60	50 88	
OK Autrou 10.38	Mn L								410	600	44	-110	75	
	WIII E											-110	50	
OK Autrod 317	S 18 15 3 L	ER317L							440	615	28	+20	100	
OH Hadioa 517	5 10 13 3 E	ER317E							110	015	20	-60	63	
OK Autrod 318	S 19 12 3 Nb	ER318							440	600	42	+20	125	
												-60	113	
												-110	50	
OK Autrod 347	S 19 9 Nb	ER347	2.4, 3.2, 4.0						455	635	36	+20	131	
												-60	106	
												-110	75	
												-196	38	
OK Autrod 385	S 20 25 5	ER385							310	530	35	+20	100	
077.4 . 10207	Cu L								640	0.40	20	-196	44	
OK Autrod 2307	S Z 23 7 N L								640	840	28	+20	106	
OK Autrod 2209	C 22 0 2 N I	ED 2200		_		-/	_	/	620	790	30	-40	75	
OK Autrou 2209	S 22 9 3 N L	ER2209		•	•	•	•	•	630	780	30	+20	175 156	
												-40	138	
												-60	100	
OK Autrod 2509	S 25 9 4 N L								640	840	28	+20	106	
										0		-60	63	

OK Flux 10.94

Основный агломерированный хромокомпенсирующий флюс, являющийся модификацией ОК Flux 10.93. Предназначен для стыковой сварки нержавеющих сталей, когда требуется более высокое содержание ферритной фазы. В основном рекомендован для многопроходной сварки на постоянном токе обратной полярности листов неограниченной толщины. При этом обеспечивается хорошее отделение шлака и красивый внешний вид валика. Флюс дает более высокое содержание феррита в металле шва благодаря добавлению хрома, что снижает риск появления горячих трещин. Незначительное легирование шва Si в процессе сварки обеспечивает хорошие механические свойства. Он применяется в химической и нефтехимической промышленности, для сварки сосудов работающих под давлением, складских резервуаров и при производстве емкостей для химически активных жидкостей. Флюс особенно подходит для сварки аустенитно-ферритных супердуплексных нержавеющих сталей типа 25%Cr-7%Ni-4%Mo-N, таких как SAF 2507 (S32750, W.Nr 1.4410), Zeron 100 (S32760, W.Nr 1.4501), S32550 (W.Nr 1.4507), DP3W (S39274) и им аналогичных, например, при строительстве шельфовых платформ. Типичный химический состав флюса:

 $\begin{array}{lll} Al_2O_3 + MnO & 35\% \\ CaF_2 & 50\% \\ SiO_2 + TiO_2 & 10\% \end{array}$

Режимы прокалки: 275-325°C, 2-4 часа

Одобрения флюса: нет

OK Autrod 2509

S 25 9 4 N L

Классификация	Индекс	Насыпная	Гран.
флюса	основности	плотность	состав
EN ISO 14174:	1,7	1,0	0,25-1,6
S A AE 2 55 55 DC			

Тип флюса	Ток и полярность	Легирование
Алюминатно- фторидный	DC+	Cr – компенсирующий

Расход флюса (кг флюса/кг проволоки)									
Напряжение	AC								
26	0,5								
30	0,6								
34	0,8								
38	1,0								

625

830

28

+20 -60 113

63

Рекомендуемые сочетания ОК Flux 10.94/проволока

Типичный химический состав наплавленного металла и содержание в нем ферритной фазы:

тини нами жими тести сестав натвавленного метавла и седержание в нем ферриттей фасы.													
Марка проволоки	C	Mn	Si	Cr	Ni	Mo	Cu	Nb	N	S	P	FN	%
													феррита
OK Autrod 308L	0,02	1,4	0,5	20,2	9,7					≤0,020	≤0,030	11	6
OK Autrod 316L	0,02	1,2	0,6	19,5	11,5	2,7				≤0,020	≤0,030	11	6
OK Autrod 347	0,04	1,0	0,5	19,6	9,6			0,5		≤0,020	≤0,030	9	5
OK Autrod 2509	≤0,04	0,5	0,5	25,5	9,5	3,5			0,20	≤0,020	≤0,025	50	30

Классификации проволок, их одобрения и типичные механические свойства наплавленного металла: EN ISO AWS НАКС ABS BV DNV Марка GL LR Механические свойства A 5.9 проволоки 14343-A (диаметры) δ T KCV [Дж/см²] [МПа] [МПа] [%] [°C] OK Autrod 308L ER308L S 199L 3.2, 4.0 400 +20 560 40 106 -40 88 -110 75 OK Autrod 316L S 19 12 3 L ER316L 385 590 36 +20 106 -196 44 OK Autrod 347 S 19 9 Nb ER347 2.4, 3.2, 4.0 455 620 38 +20 25 -60 88 -110 63

OK Flux 10.95

Основный агломерированный никельлегирующий флюс, являющийся модификацией ОК Flux 10.93. Предназначен основном для многопроходной сварки на постоянном токе обратной полярности стыковых и угловых швов аустенитных нержавеющих сталей к комбинации с проволоками ER300-ой группы по стандарту AWS. Он особенно рекомендован для сварки нержавеющих сталей, когда требуются хорошие показатели ударной вязкости при низких температурах. При этом обеспечивается хорошее отделение шлака и красивый внешний вид валика. Добавление никеля во флюс делает его особенно подходящим для ситуаций, когда требуется низкое содержание ферритной фазы (максимально FN 3-8). Ограниченное содержание феррита и незначительное легирование Si в процессе сварки обеспечивает очень хорошие механические характеристики металла шва. Флюс часто применяется при производстве криогенного оборудования, сосудов, работающих под давлением, складских резервуаров и транспортном машиностроении.

Типичный химический состав флюса:

 $\begin{array}{ll} \text{Ni} & 2\% \\ \text{Al}_2\text{O}_3 + \text{MnO} & 40\% \\ \text{CaF}_2 & 50\% \\ \text{SiO}_2 + \text{TiO}_2 & 8\% \end{array}$

Режимы прокалки: 275-325°C, 2-4 часа

Одобрения флюса: нет

Классификация	Индекс	Насыпная	Гран.
флюса	основности	плотность	состав
EN ISO 14174: S A AF 2 55 45 Ni DC	1,7	1,0	0,25 – 1,6

Тип флюса	Ток и полярность	Легирование
Алюминатно- фторидный	DC+	Ni – легирующий

Расход флюса (кг флюса/кг проволоки)										
Напряжение	DC+	AC								
26	0,5									
30	0,6									
34	0,8									
38	1,0									

Рекомендуемые сочетания ОК Flux 10.95/проволока

Типичный химический состав наплавленного металла и содержание в нем ферритной фазы:

типи пви жити тести сестав паплавленного тетавла и седержание в нет ферриттей фасы.													
Марка проволоки	C	Mn	Si	Cr	Ni	Mo	Cu	Nb	N	S	P	FN	%
													феррита
OK Autrod 308H	≤0,08	1,6	0,4	20,0	11,0					≤0,020	≤0,030	3	1,5
OK Autrod 308L	≤0,03	1,7	0,6	20,1	11,0					≤0,020	≤0,030	4	2
OK Autrod 316L	≤0,03	1,4	0,6	18,5	13,3	2,7				≤0,020	≤0,030	4	2
OK Autrod 347	0,04	1,0	0,5	19,0	10,0			0,5		≤0,020	≤0,030	6	3,5

Классификации проволок, их одобрения и типичные механические свойства наплавленного металла:

Марка	EN ISO	AWS	НАКС	ABS	BV	DNV	GL	LR	Механические свойства				тва
проволоки	14343-A	A 5.9	(диаметры)						$\sigma_{\scriptscriptstyle T}$	$\sigma_{\scriptscriptstyle B}$	δ	T	KCV
									[МПа]	[МПа]	[%]	[°C]	[Дж/cм ²]
OK Autrod 308H	S 19 9 H	ER308H							380	580	40		
OK Autrod 308L	S 19 9 L	ER308L	3.2, 4.0						400	540	40	+20	110
												-60	100
												-110	88
												-196	63
OK Autrod 316L	S 19 12 3 L	ER316L							390	565	38	-60	113
												-110	94
												-196	50
OK Autrod 347	S 19 9 Nb	ER347	2.4, 3.2, 4.0						455	620	38	+20	125
												-60	88
												-110	63
												-196	38