

Sandvik 18.8.Mn (Сварочная проволока)

Издание от 2012-08-02 (заменяет все предыдущие публикации)

Sandvik 18.8.Мп – присадочный материал типа ER 307, применяемый для сварки высокопрочных сталей, броневых листов, аустенитных марганцевых сталей, а также легкообрабатываемых сталей, таких как ASTM 303, и хромовых сталей с содержанием хрома не более 18%.

Эта марка используется, например, в атомобильной промышленности для сварки разнородных металлов. Также применяется для наплавки углеродистых сталей и низколегированных. Sandvik 18.8.Mn пригодна для сварки методом MIG/MAG, TIG и PAW.

Обозначение по стандарту

AWS: ER(307)EN: 18 8 Mn

Стандарты на продукцию

• EN ISO 14343

Присадочный металл

Химический состав, % по массе

С	Si	Mn	P	S	Cr	Ni	Мо	Co	Cu	N
0,08	0,9	7,0	<0,025	0,015	18	8	<0,3	<0,5	<0,10	<0,06

Химический состав наплавленного металла

Типичный химический состав для нетермообработанного наплавленного металла после сварки методом МИГ в защитном газе Ar $+ 2\% O_2$.

Химический состав, % по массе

		•						
С	Si	Mn	Р	S	Cr	Ni	N	
0.07	8,0	6	0.010	0.009	18	8	0.05	

Микроструктура наплавленного металла

Полностью аустенитная.

Механические свойства наплавленного металла

МИГ ТИГ – типичные для нетермообработанного сварного шва

·	•	
Температура,	°C	20
Предел текучести, RP _{0,2}	МПа	460
Предел прочности, Rм	МПа	650
Удлиннение, А	%	41
Относитнльное сужение, Z	%	61
Ударная вязкость по Шарпу, V	Дж	140
Твердость по Виккерсу	HV	200

Физические свойства наплавленного металла

Температура, °С	20	100	300	500	
Удельная теплопроводность, Вт/м	15	16	18	20	

Коррозионная стойкость наплавленного металла

Sandvik 18.8.Мn облалает подобной коррозионной стойкостью как соответствующий основной металл. При сварке углеродистых или низколегированных сталей и нержавеющих сталей коррозионная стойкость имеет второстепенное значение.

Рекомендации по сварке

МИГ сварка

Для всех типов сварных соединений используется обратная полярность для обеспечения лучшего проплавления. Данные в таблице показывают общие условия для сварки методом МИГ.

Диаметр	Скорость подачи	Ток, А	Напряжение, В	Газ, л/мин			
проволоки, мм	проволоки, м/мин						
Сварка короткой дуг	ой						
1.0	4 - 8	60 - 140	15 - 21	12			
Струйная дуговая сварка							
1.0	6 - 12	140 - 220	23 - 28	18			
1.2	5 – 9	180 - 260	24 - 29	18			
Импульсно-дуговая сварка ¹⁾							
1.2	3 - 10	150 - 250	23 - 31	18			

¹⁾ Параметры импульса	Максимальный ток	300 - 400 A
	Фоновый ток	50 - 150 A
	Частота	80 - 120 Hz

Для определения рекомендуемого защитного газа обратитесь κ брошюре Sandvik (Stainless Welding Products).

Сварка короткой дугой используется для тонколистовых материалов толщиной менее 3 мм при первых проходах в корне шва, а также при сварке в неплоскостном положении.

Чем выше индуктивность при сварке короткой дугой, тем выше текучесть расплавленной массы металла.

Сварка распылением обычно используется для толстолистовых материалов.

ТИГ сварка

Параметры сварки методом ТИГ в основном зависят от толщины основного металла и процесса проведения сварки.

При сварке на электроде находится отрицательный полюс, применение защитного газа (аргон или гелий) позволяет предотвратить окисление металла шва.

Сертификация

CE, DB, TUV

Рекомендации даны только для сведения, пригодность материала для конкретного применения можно подтвердить только при условии, что нам будут известны фактические условия эксплуатации. В результате продолжающихся разработок технические данные могут быть изменены без уведомления.